%%% A few theorems in classical propositional logic %%% (taken from F. J. Pelletier, "75 Problems for Testing ATP") %%% Author: Roberto Virga %use equality/booleans. %% theorem theorem : bool -> type. tt : theorem true. %% Problems 1-17 follow %query 1 * theorem ((P => Q) <=> (! Q => ! P)). %query 1 * theorem (! ! P <=> P). %query 1 * theorem ((! (P => Q)) => (Q => P)). %query 1 * theorem ((! P => Q) => (! Q => P)). %query 1 * theorem (((P | Q) => (P | R)) => (P | (Q => R))). %query 1 * theorem (P | ! P). %query 1 * theorem (P | ! ! ! P). %query 1 * theorem (((P => Q) => P) => P). %query 1 * theorem (((P | Q) & (! P | Q) & (P | ! Q)) => ! (! P | ! Q)). %query 1 * theorem ((Q => R) & (R => (P & Q)) & (P => (Q | R)) => (P <=> Q)). %query 1 * theorem (P <=> P). %query 1 * theorem (((P <=> Q) <=> R) <=> (P <=> (Q <=> R))). %query 1 * theorem ((P | (Q & R)) <=> ((P | Q) & (P | R))). %query 1 * theorem ((P <=> Q) <=> ((Q | ! P) & (! Q | P))). %query 1 * theorem ((P => Q) <=> (! P | Q)). %query 1 * theorem ((P => Q) | (Q => P)). %query 1 * theorem (((P & (Q => R)) => S) <=> ((! P | Q | S) & (! P | ! R | S))). @ 1.2 log @no message @ text @@ 1.1 log @Initial revision @ text @d51 1 a51 1 theorem (((P <=> Q) <=> R) <=> (P <=> (Q <=> R))). @ 1.1.1.1 log @no message @ text @@