%%% Cut-Free Intuitionistic Sequent Calculus %%% Author: Frank Pfenning hyp : o -> type. % Hypotheses (left) conc : o -> type. % Conclusion (right) %name hyp H. %name conc D. axiom : (hyp A -> conc A). andr : conc A -> conc B -> conc (A and B). andl1 : (hyp A -> conc C) -> (hyp (A and B) -> conc C). andl2 : (hyp B -> conc C) -> (hyp (A and B) -> conc C). impr : (hyp A -> conc B) -> conc (A imp B). impl : conc A -> (hyp B -> conc C) -> (hyp (A imp B) -> conc C). orr1 : conc A -> conc (A or B). orr2 : conc B -> conc (A or B). orl : (hyp A -> conc C) -> (hyp B -> conc C) -> (hyp (A or B) -> conc C). notr : ({p:o} hyp A -> conc p) -> conc (not A). notl : conc A -> (hyp (not A) -> conc C). truer : conc (true). falsel : (hyp (false) -> conc C). forallr : ({a:i} conc (A a)) -> conc (forall A). foralll : {T:i} (hyp (A T) -> conc C) -> (hyp (forall A) -> conc C). existsr : {T:i} conc (A T) -> conc (exists A). existsl : ({a:i} hyp (A a) -> conc C) -> (hyp (exists A) -> conc C).