% Proof equivalence: "=>" direction % Partial check of hand-coded proof % decidable {SD} peq SD _. %theorem peqf : forall* {K1:cont} {E1:exp} {V1:val} {V2:val} {C:K1 # ev E1 =>* answer V1} {D:eval E1 V2} {C':K1 # return V2 =>* answer V1} forall {SD : csd C D C'} exists {CP : ccp D C' C} true. %prove 6 SD (peqf SD _). % Partial verification of generated proof %terminates SD (peqf SD _). % Proof equivalence: "<=" direction %theorem peqr : forall* {K1:cont} {E1:exp} {V1:val} {V2:val} {C:K1 # ev E1 =>* answer V1} {D:eval E1 V2} {C':K1 # return V2 =>* answer V1} forall {CP : ccp D C' C} exists {SD : csd C D C'} true. %prove 6 CP (peqr CP _). % Partial verification of generated proof %terminates CP (peqr CP _).