%%% The language and inference rules of natural deduction %%% This contains only the positive fragment %%% Author: Frank Pfenning i : type. % individuals o : type. % formulas p : type. % atomic formulas %name i T. % S %name o A. % B C %name p P. % Q atom : p -> o. and : o -> o -> o. %infix right 11 and. imp : o -> o -> o. %infix right 10 imp. true : o. forall : (i -> o) -> o. pf : o -> type. % natural deductions %name pf D. % E andi : pf A -> pf B -> pf (A and B). andel : pf (A and B) -> pf A. ander : pf (A and B) -> pf B. impi : (pf A -> pf B) -> pf (A imp B). impe : pf (A imp B) -> pf A -> pf B. truei : pf (true). foralli : ({a:i} pf (A a)) -> pf (forall A). foralle : pf (forall A) -> {T:i} pf (A T).