% comb does the translation from natural deduction to Hilbert deductions, % appealing to the deduction theorem in case of implies-introduction % which requires hypothetical reasoning. comb : ! A -> |- A -> type. % mode comb +D -F. ctrue : comb trueI ONE. candI : comb (andI P Q) (MP (MP PAIR P') Q') <- comb P P' <- comb Q Q'. candEL : comb (andEL P) (MP LEFT P') <- comb P P'. candER : comb (andER P) (MP RIGHT P') <- comb P P'. cimpliesI : comb (impliesI PP) Q <- ({x}{y} comb x y -> ({B:o} abs ([z:|- B] y) (MP K y)) -> comb (PP x) (PP' y)) <- abs PP' Q. cimpliesE : comb (impliesE P Q) (MP P' Q') <- comb P P' <- comb Q Q'.