%querytabled * * D : {A:o}{B:o}conc ((A and B) imp (B and A)). %querytabled * * D : {A:o}{B:o}((hyp (A and B) -> conc (B and A))). %querytabled * * D : {A:o}{B:o}(conc (A imp B imp A)). %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A imp B imp C) -> conc ((A and B) imp C)). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A and B) imp C) -> conc (A imp B imp C)). %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A imp B imp C) -> conc ((A imp B) imp A imp C)). % proof of S %querytabled * * D : {A:o}{B:o}{C:o}(conc ((A imp B imp C) imp (A imp B) imp A imp C)). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A and B) and C) -> conc (A and (B and C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A and (B and C)) -> conc ((A and B) and C)). % impDef % %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A and B) or C) -> conc ((A or C) and (B or C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A and (B or C)) -> conc ((A and B) or (A and C))). % new from ATP notes % 2 %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A imp (B and C)) -> conc ((A imp B) and (A imp C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A imp B) and (A imp C)) -> conc (A imp (B and C))). % 3 %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A imp B) or (A imp C)) -> conc (A imp (B or C))). % 4 %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A or C) and (B imp C)) -> conc ((A imp B) imp C)). % 5 %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A or B) imp C) -> conc ((A imp C) and (B imp C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A imp C) and (B imp C)) -> conc ((A or B) imp C)). % 6 %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A and (B or C)) -> conc ((A and B) or (A and C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A and B) or (A and C)) -> conc (A and (B or C))). % 7 %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A or (B and C)) -> conc ((A or B) and (A or C))). %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A or B) and (A or C)) -> conc (A or (B and C))). % Id : A => A %querytabled * * D : {A:o} conc (A imp A). % K : A => B => A %querytabled * * D : {A:o}{B:o} conc (A imp B imp A). % S : (A => B => C) => (A => B) => (A => C) %querytabled * * D : {A:o}{B:o}{C:o} conc ((A imp (B imp C)) imp ((A imp B) imp (A imp C))). % (A & B => C) <=> (A => B => C) %querytabled * * D : {A:o}{B:o}{C:o} conc (((A and B) imp C) imp (A imp (B imp C))). %querytabled * * D : {A:o}{B:o}{C:o} conc ((A imp (B imp C)) imp ((A and B) imp C)). % (A => B & C) <=> (A => B) & (A => C) %querytabled * * D : {A:o}{B:o}{C:o} conc ((A imp (B and C)) imp (A imp B) and (A imp C)). %querytabled * * D : {A:o}{B:o}{C:o} conc (((A imp B) and (A imp C)) imp (A imp (B and C))). % (A => T) <=> T %querytabled * * D : {A:o} conc ((A imp true) imp true). %querytabled * * D : {A:o} conc (true imp (A imp true)). % (A v B => C) <=> (A => C) & (B => C) %querytabled * * D : {A:o}{B:o}{C:o} conc (((A or B) imp C) imp ((A imp C) and (B imp C))). %querytabled * * D : {A:o}{B:o}{C:o} conc (((A imp C) and (B imp C)) imp ((A or B) imp C)). % (F => C) <=> T %querytabled * * D : {C:o} conc ((false imp C) imp true). %querytabled * * D : {C:o}conc (true imp (false imp C)). % (A => B v C) =>(A => B) v (A => C) %querytabled * * D : {A:o}{B:o}{C:o} conc (((A imp B) or (A imp C)) imp (A imp (B or C))). % F => C %querytabled * * D : {C:o}conc (false imp C). % A => ((A => F) => F) %querytabled * * D : {A:o}conc (A imp ((A imp false) imp false)). % ((A => F) & A) => C %querytabled * * D : {A:o}{C:o} conc (((A imp false) and A) imp C). % A & ~B => ~(A => B) %querytabled * * D : {A:o}{B:o}conc ((A and (B imp false)) imp ((A imp B) imp false)). % A & (B v C) <=> (A & B) v (A & C) %querytabled * * D : {A:o}{B:o}{C:o} conc ((A and (B or C)) imp ((A and B) or (A and C))). %querytabled * * D : {A:o}{B:o}{C:o} conc (((A and B) or (A and C)) imp (A and (B or C))). % A & F <=> F %querytabled * * D : {A:o}conc ((A and false) imp false). %querytabled * * D : {A:o}conc (false imp (A and false)). % A v (B & C) <=> (A v B) & (A v C) %querytabled * * D : {A:o}{B:o}{C:o} conc ((A or (B and C)) imp (A or B) and (A or C)). %querytabled * * D : {A:o}{B:o}{C:o} conc (((A or B) and (A or C)) imp (A or (B and C))). %querytabled * * D : {A:o}conc (A imp (A and A)). %querytabled * * D : {A:o}conc ((A and A) imp A). %querytabled * * D : {A:o}conc (A imp (A or A)). %querytabled * * D : {A:o}conc ((A or A) imp A). % ~A v ~B => ~(A & B) %querytabled * * D : {A:o}{B:o}conc (((A imp false) or (B imp false)) imp ((A and B) imp false)). % A => A v B %querytabled * * D : {A:o}{B:o}conc (A imp (A or B)). % B => A v B %querytabled * * D : {A:o}{B:o}conc (B imp (A or B)). % A & B => A %querytabled * * D : {A:o}{B:o}conc ((A and B) imp A). % A & B => B %querytabled * * D : {A:o}{B:o}conc ((A and B) imp B). % A v ~A => ((A => B) => A) => A %querytabled * * D : {A:o}{B:o}conc ((A or (A imp false)) imp (((A imp B) imp A) imp A)).