% ((A => F) => F) => A %querytabled * * D : {A:o}conc (((A imp false) imp false) imp A). % Peirce's law : conc ((A => B) => A) => A %querytabled * * D : {A:o}{B:o}conc (((A imp B) imp A) imp A). % (A => false) or A %querytabled * * D : {A:o}conc ((A imp false) or A). % ((A => F) => A) => A %querytabled * * D : {A:o}conc (((A imp false) imp A) imp A). % T => F %querytabled * * D : conc ((true imp false)). % ~(A => B) => A & ~B %querytabled * * D : {A:o}{B:o}conc (((A imp B) imp false) imp(A and (B imp false))). % ~(A & B) => ~A v ~B %querytabled * * D : {A:o}{B:o}conc (((A and B) imp false) imp ((A imp false) or (B imp false))). % (A => B v C) <= (A => B) v (A => C) %querytabled * * D : {A:o}{B:o}{C:o}conc ((A imp (B or C)) imp (A imp C)). % (A & B) => (((A => (B => C)) => C) => (A => B => C)) %querytabled * * D : {A:o}{B:o}{C:o}conc ((A and B) imp (((A imp (B imp C)) imp C) imp (A imp (B imp C)))). % A => (B v C) --> (A => B) v (A imp C) %querytabled * * D : {A:o}{B:o}{C:o}(hyp (A imp (B or C)) -> conc ((A imp B) or (A imp C))). % A => B => C ---> (A v C) & (B => C) %querytabled * * D : {A:o}{B:o}{C:o}(hyp ((A imp B) imp C) -> conc ((A or C) and (B imp C))).