(* Abstract Machine *) (* Author: Iliano Cervesato *) (* Modified: Jeff Polakow *) (* Modified: Frank Pfenning *) functor AbsMachine (structure IntSyn' : INTSYN structure CompSyn' : COMPSYN sharing CompSyn'.IntSyn = IntSyn' structure Unify : UNIFY sharing Unify.IntSyn = IntSyn' structure Trail : TRAIL sharing Trail.IntSyn = IntSyn' (* CPrint currently unused *) structure CPrint : CPRINT sharing CPrint.IntSyn = IntSyn' sharing CPrint.CompSyn = CompSyn' structure Names : NAMES sharing Names.IntSyn = IntSyn') : ABSMACHINE = struct structure IntSyn = IntSyn' structure CompSyn = CompSyn' local structure I = IntSyn open CompSyn in (* We write G |- M : g if M is a canonical proof term for goal g which could be found following the operational semantics. In general, the success continuation sc may be applied to such M's in the order they are found. Backtracking is modeled by the return of the success continuation. Similarly, we write G |- S : r if S is a canonical proof spine for residual goal r which could be found following the operational semantics. A success continuation sc may be applies to such S's in the order they are found and return to indicate backtracking. *) (* solve ((g, s), dProg, sc) => () Invariants: dProg = (G, dPool) where G ~ dPool (context G matches dPool) G |- s : G' G' |- g goal if G |- M : g[s] then sc M is evaluated Effects: instantiation of EVars in g, s, and dProg any effect sc M might have *) fun solve ((Atom(p), s), dProg, sc) = matchAtom ((p,s), dProg, sc) | solve ((Impl(r, A, a, g), s), (G, dPool), sc) = let val D' = I.Dec(NONE, I.EClo(A,s)) in solve ((g, I.dot1 s), (I.Decl(G, D'), I.Decl (dPool, SOME(r, s, a))), (fn M => sc (I.Lam (D', M)))) end | solve ((All(D, g), s), (G, dPool), sc) = let val D' = I.decSub (D, s) in solve ((g, I.dot1 s), (I.Decl(G, D'), I.Decl(dPool, NONE)), (fn M => sc (I.Lam (D', M)))) end (* rsolve ((p,s'), (r,s), dProg, sc) = () Invariants: dProg = (G, dPool) where G ~ dPool G |- s : G' G' |- r resgoal G |- s' : G'' G'' |- p : H @ S' (mod whnf) if G |- S : r[s] then sc S is evaluated Effects: instantiation of EVars in p[s'], r[s], and dProg any effect sc S might have *) and rSolve (ps', (Eq(Q), s), dProg, sc) = if Unify.unifiable (ps', (Q, s)) (* effect: instantiate EVars *) then sc I.Nil (* call success continuation *) else () (* fail *) | rSolve (ps', (And(r, A, g), s), dProg, sc) = let (* is this EVar redundant? -fp *) val X = I.newEVar (I.EClo(A, s)) in rSolve (ps', (r, I.Dot(I.Exp(X,A), s)), dProg, (fn S => solve ((g, s), dProg, (fn M => sc (I.App (M, S)))))) end | rSolve (ps', (Exists(I.Dec(_,A), r), s), dProg, sc) = let val X = I.newEVar (I.EClo (A,s)) in rSolve (ps', (r, I.Dot(I.Exp(X,A), s)), dProg, (fn S => sc (I.App(X,S)))) end (* matchatom ((p, s), dProg, sc) => () Invariants: dProg = (G, dPool) where G ~ dPool G |- s : G' G' |- p : type, p = H @ S mod whnf if G |- M :: p[s] then sc M is evaluated Effects: instantiation of EVars in p[s] and dProg any effect sc M might have This first tries the local assumptions in dProg then the static signature. *) and matchAtom (ps' as (I.Root(I.Const(a),_),_), dProg as (G,dPool), sc) = let (* matchSig [c1,...,cn] = () try each constant ci in turn for solving atomic goal ps', starting with c1. *) fun matchSig nil = () (* return indicates failure *) | matchSig (c::sgn') = let val SClause(r) = sProgLookup c in (* trail to undo EVar instantiations *) Trail.trail (fn () => rSolve (ps', (r, I.id), dProg, (fn S => sc (I.Root(I.Const(c), S))))) ; matchSig sgn' end (* matchDProg (dPool, k) = () where k is the index of dPool in global dPool from call to matchAtom. Try each local assumption for solving atomic goal ps', starting with the most recent one. *) fun matchDProg (I.Null, _) = (* dynamic program exhausted, try signature *) matchSig (Index.lookup a) | matchDProg (I.Decl (dPool', SOME(r, s, a')), k) = if a = a' then (* trail to undo EVar instantiations *) (Trail.trail (fn () => rSolve (ps', (r, I.comp(s, I.Shift(k))), dProg, (fn S => sc (I.Root(I.BVar(k), S))))) ; matchDProg (dPool', k+1)) else matchDProg (dPool', k+1) | matchDProg (I.Decl (dPool', NONE), k) = matchDProg (dPool', k+1) in matchDProg (dPool, 1) end end (* local ... *) end; (* functor AbsMachine *)