% Examples % First a few examples that do not use double negation. %query 1 * D:sound % (not false) (not not not false) (nk_noti [p:o] [u:nk false] (nk_falsee u)) (kolm_not kolm_false) NJ. %query 1 * D:complete (kolm_not kolm_false) (nj_noti ([p:o] [u:nj (not not not not false)] nj_note u p (nj_noti ([p1:o] [X1:nj (not not false)] nj_note (nj_note X1 (not not false) (nj_noti ([p2:o] [u1:nj false] nj_falsee u1))) p1 (nj_noti ([p3:o] [u2:nj false] nj_falsee u2)))))) NK. %query 1 * D:sound % false implies false (nk_impi ([u:nk false] nk_falsee u)) (kolm_imp kolm_false kolm_false) NJ. %query 1 * D:complete (kolm_imp kolm_false kolm_false) (nj_noti % I took this NJ deduction from the solution to the previous query. ([p:o] [u:nj (not (not not false imp not not false))] nj_note u p (nj_impi ([X1:nj (not not false)] nj_note X1 (not not false) (nj_noti ([p1:o] [u1:nj false] nj_falsee u1)))))) NK. %query 1 * D:sound % (false imp true) (nk_impi [u:nk false] nk_truei) (kolm_imp kolm_true kolm_false) NJ. %query 1 * D:complete (kolm_imp kolm_true kolm_false) (nj_noti ([p:o] [u:nj (not (not not false imp not not true))] nj_note u p (nj_impi ([X1:nj (not not false)] nj_noti ([p1:o] [u1:nj (not true)] nj_note u1 p1 nj_truei))))) NK. %query 1 * D:sound % (false imp true) (nk_impi [u:nk false] (nk_falsee u)) (kolm_imp kolm_true kolm_false) NJ. %query 1 * D:complete (kolm_imp kolm_true kolm_false) (nj_noti ([p:o] [u:nj (not (not not false imp not not true))] nj_note u p (nj_impi ([X1:nj (not not false)] nj_noti ([p1:o] [u1:nj (not true)] nj_note u1 p1 nj_truei))))) NK. % A good first test case using dnot, noti, note, and truei. % true true % - - - - - ====> .... % - - true .... % ---------dnot ----------- % true - - true %query 1 * D:sound % true (nk_dnotr (nk_noti ([p:o] [u:nk (not true)] nk_note u p nk_truei))) kolm_true NJ. %query 1 * D:complete kolm_true (nj_noti ([q:o] [u:nj (not true)] nj_note (nj_noti ([q1:o] [u1:nj (not not not true)] nj_note (nj_noti ([q2:o] [u2:nj (not not not not not true)] nj_note (nj_noti ( [p:o] [u3:nj (not not not not not not not true)] nj_note u3 p (nj_noti ([p1:o] [X1:nj (not not not not not true)] nj_note (nj_note (nj_noti ([q3:o] [u4:nj (not not true)] nj_note X1 q3 (nj_noti ([p2:o] [v:nj (not not not true)] nj_note v p2 u4)))) (not not false) (nj_noti ([p3:o] [u5:nj (not true)] nj_note u5 p3 nj_truei))) p1 (nj_noti ([p4:o] [u6:nj false] nj_falsee u6)))))) q2 (nj_noti ([p:o] [v:nj (not not not not not not true)] nj_note v p u2)))) q1 (nj_noti ([p:o] [v:nj (not not not not true)] nj_note v p u1)))) q (nj_noti ([p:o] [v:nj (not not true)] nj_note v p u)))) NK. % A big monster example using every propositional inference % rule. Don't even try to read the corresponding NJ proof! %query 1 * D:sound % ((true or false) and (not false)) (nk_andi (nk_ore (nk_impe (nk_impi [v2:nk true] (nk_orir (nk_andi nk_truei v2))) (nk_dnotr (nk_noti [p] [u2:nk (not true)] (nk_note u2 p nk_truei)))) ([u:nk ((true or false) and false)] (nk_andel u)) ([v:nk (true and true)] (nk_oril (nk_ander v)))) (nk_noti [p] [w:nk false] (nk_falsee w))) (kolm_and (kolm_not kolm_false) (kolm_or kolm_false kolm_true)) NJ. %query 1 * D:complete (kolm_and (kolm_not kolm_false) (kolm_or kolm_false kolm_true)) (nj_noti ([p:o] [u:nj (not (not not (not not true or not not false) and not not not not not false))] nj_note u p (nj_andi (nj_noti ([q:o] [v:nj (not (not not true or not not false))] nj_note (nj_noti ([q1:o] [v1:nj (not (not not (not not (not not true or not not false) and not not false) or not not (not not true and not not true)))] nj_note ( nj_noti ([p1:o] [u1:nj (not (not not true imp not not (not not (not not (not not true or not not false) and not not false) or not not (not not true and not not true))))] nj_note u1 p1 (nj_impi ([X1:nj (not not true)] nj_noti ([p2:o] [u2:nj (not (not not (not not (not not true or not not false) and not not false) or not not (not not true and not not true)))] nj_note u2 p2 (nj_orir (nj_noti ([p3:o] [u3:nj (not (not not true and not not true))] nj_note u3 p3 (nj_andi (nj_noti ([p4:o] [u4:nj (not true)] nj_note u4 p4 nj_truei)) X1))))))))) q1 ( nj_noti ([p5:o] [u5:nj (not not true imp not not (not not (not not (not not true or not not false) and not not false) or not not (not not true and not not true)))] nj_note (nj_impe u5 (nj_noti ([q2:o] [u6:nj (not true)] nj_note (nj_noti ([q3:o] [u7:nj (not not not true)] nj_note (nj_noti ([q4:o] [u8:nj (not not not not not true)] nj_note (nj_noti ([p6:o] [u9:nj (not not not not not not not true)] nj_note u9 p6 (nj_noti ([p7:o] [X2:nj (not not not not not true)] nj_note (nj_note (nj_noti ([q5:o] [u10:nj (not not true)] nj_note X2 q5 (nj_noti ([p8:o] [v2:nj (not not not true)] nj_note v2 p8 u10)))) (not not false) (nj_noti ([p9:o] [u11:nj (not true)] nj_note u11 p9 nj_truei))) p7 (nj_noti ([p10:o] [u12:nj false] nj_falsee u12)))))) q4 (nj_noti ([p11:o] [v3:nj (not not not not not not true)] nj_note v3 p11 u8)))) q3 (nj_noti ([p12:o] [v4:nj (not not not not true)] nj_note v4 p12 u7)))) q2 (nj_noti ([p13:o] [v5:nj (not not true)] nj_note v5 p13 u6))))) p5 v1)))) q (nj_noti ([p14:o] [u13:nj (not not (not not (not not true or not not false) and not not false) or not not (not not true and not not true))] nj_note ( nj_ore u13 ([X3:nj (not not (not not (not not true or not not false) and not not false))] nj_noti ([q6:o] [u14:nj (not (not not true or not not false))] nj_note X3 q6 (nj_noti ([p15:o] [v6:nj (not not (not not true or not not false) and not not false)] nj_note (nj_andel v6) p15 u14)))) ([X4:nj (not not (not not true and not not true))] nj_noti ([p16:o] [u15:nj (not (not not true or not not false))] nj_note u15 p16 (nj_oril (nj_noti ([q7:o] [u16:nj (not true)] nj_note X4 q7 (nj_noti ([p17:o] [v7:nj (not not true and not not true)] nj_note (nj_ander v7) p17 u16)))))))) p14 v)))) (nj_noti ([p18:o] [u17:nj (not not not not false)] nj_note u17 p18 (nj_noti ([p19:o] [X5:nj (not not false)] nj_note (nj_note X5 (not not false) (nj_noti ([p20:o] [u18:nj false] nj_falsee u18))) p19 (nj_noti ([p21:o] [u19:nj false] nj_falsee u19))))))))) NK. % Oh, what about excluded middle itself! %query 1 * D:({a:o} {ka:kolm a (not not a)} existskolm a (not not a) ka -> sound % (a or (not a)) (not not ((not not a) or (not not not not not a))) (nk_dnotr (nk_noti ([p] [u:nk (not (a or (not a)))] nk_note u p (nk_orir (nk_noti ([q] [v:nk a] nk_note u q (nk_oril v))))))) (kolm_or (kolm_not ka) ka) (NJ a)). % check of completeness for the NJ proof returned by soundness %query 1 * D:({a:o} {ka:kolm a (not not a)} equiv ka ([u:nk a] (nk_dnotx u)) ([u:nk (not not a)] (nk_dnotr u)) -> complete (kolm_or (kolm_not ka) ka) (nj_triple_neg_red (nj_triple_neg_red (nj_triple_neg_red (nj_dnotx (nj_noti ([q:o] [v:nj (not not not not not (not not a or not not not not not a))] nj_dneg_falser (nj_note (nj_triple_neg_red v) (not not false) (nj_dnotx (nj_orir (nj_dnotx (nj_noti ([q1:o] [v1:nj (not not a)] nj_dneg_falser (nj_note (nj_triple_neg_red v) (not not false) (nj_dnotx (nj_oril v1))) q1)))))) q)))))) (NK a)). % Check of completeness for a more reasonable NJ proof. %query 1 * D:({a:o} {ka:kolm a (not not a)} equiv ka ([u:nk a] (nk_dnotx u)) ([u:nk (not not a)] (nk_dnotr u)) -> complete (kolm_or (kolm_not ka) ka) (nj_noti [p] [u:nj (not ((not not a) or (not not not not not a)))] (nj_note u p (nj_orir (nj_dnotx (nj_noti [q] [v:nj (not not a)] (nj_note u q (nj_oril v))))))) (NK a)). % How about the DeMorgan's Law Example which is an NK theorem, but not NJ. % -(A and B) -> -A or -B. %query 1 * D:({a:o} {b:o} {ka:kolm a (n a)} {kb:kolm b (n b)} existskolm a (n a) ka -> existskolm b (n b) kb -> sound (nk_impi [u:nk (not (a and b))] (nk_dnotr (nk_noti ([p] [v:nk (not ((not a) or (not b)))] nk_note v p (nk_orir (nk_noti ([q] [w:nk b] nk_note v q (nk_oril (nk_noti [r] [z:nk a] (nk_note u r (nk_andi z w))))))))))) (kolm_imp (kolm_or (kolm_not kb) (kolm_not ka)) (kolm_not (kolm_and kb ka))) (NJ a b)). %query 1 * D:({a:o} {b:o} {ka:kolm a (n a)} {kb:kolm b (n b)} equiv ka ([u:nk a] (nk_dnotx u)) ([u:nk (not not a)] (nk_dnotr u)) -> equiv kb ([u:nk b] (nk_dnotx u)) ([u:nk (not not b)] (nk_dnotr u)) -> complete % NJ proof returned by Twelf (kolm_imp (kolm_or (kolm_not kb) (kolm_not ka)) (kolm_not (kolm_and kb ka))) (nj_dnotx (nj_impi ([X2:nj (n (not n (n a and n b)))] nj_triple_neg_red (nj_triple_neg_red (nj_triple_neg_red (nj_dnotx (nj_noti ([q:o] [v:nj (n (not not not (n (not n a) or n (not n b))))] nj_dneg_falser (nj_note (nj_triple_neg_red v) (n false) (nj_dnotx (nj_orir (nj_dnotx (nj_noti ([q1:o] [v1:nj (n b)] nj_dneg_falser (nj_note (nj_triple_neg_red v) (n false) (nj_dnotx (nj_oril (nj_dnotx (nj_noti ([q2:o] [v2:nj (n a)] nj_dneg_falser (nj_note (nj_triple_neg_red X2) (n false) (nj_dnotx (nj_andi v2 v1))) q2)))))) q1)))))) q)))))))) (NK a b)). % Now to test the quantifier rules. % First a simple example %query 1 * D:({R:i -> i -> o} {kr:{x} {y} kolm (R x y) (not not (R x y))} ({x} {y} existskolm (R x y) (not not (R x y)) (kr x y)) -> sound % ((forall [x] (R x x)) imp (forall [x] (exists [y] (R x y)))) % (not not ((not not (forall [x] (not not (R x x)))) imp % (not not (forall [x] (not not (exists [y] (not not (R x y))))))) (nk_impi [u:nk (forall [x] (R x x))] (nk_foralli [a] (nk_existsi a (nk_foralle u a)))) (kolm_imp (kolm_forall [x] (kolm_exists [y] (kr x y))) (kolm_forall [x] (kr x x))) (NJ R)). %query 1 * D:({R:i -> i -> o} {kr:{x} {y} kolm (R x y) (not not (R x y))} ({x} {y} equiv (kr x y) ([u:nk (R x y)] (nk_dnotx u)) ([u:nk (not not (R x y))] (nk_dnotr u))) -> complete (kolm_imp (kolm_forall [x] (kolm_exists [y] (kr x y))) (kolm_forall [x] (kr x x))) (nj_noti ([p:o] [u:nj (not (not not forall ([x:i] not not R x x) imp not not forall ([x:i] not not exists ([y:i] not not R x y))))] nj_note u p (nj_impi ([X2:nj (not not forall ([x:i] not not R x x))] nj_noti ([p1:o] [u1:nj (not forall ([T1:i] not not exists ([y:i] not not R T1 y)))] nj_note u1 p1 (nj_foralli ([a:i] nj_noti ([p2:o] [u2:nj (not exists ([T2:i] not not R a T2))] nj_note u2 p2 (nj_existsi a (nj_noti ([q:o] [v:nj (not R a a)] nj_note X2 q (nj_noti ([p3:o] [u3:nj (forall ([x:i] not not R x x))] nj_note (nj_foralle u3 a) p3 v))))))))))))) (NK R)). % Now the quantifier rule corresponding to DeMorgan's Law above. % -(all x A) implies exists x -A. %query 1 * D:({A:i -> o} {kA:{x:i} kolm (A x) (n (A x))} ({x:i} existskolm (A x) (n (A x)) (kA x)) -> sound (nk_impi [u:nk (not (forall A))] (nk_dnotr (nk_noti ([p] [v:nk (not (exists [x] (not (A x))))] nk_note u p (nk_foralli ([a:i] nk_dnotr % used twice! (nk_noti ([q] [w:nk (not (A a))] nk_note v q (nk_existsi a w))))))))) (kolm_imp (kolm_exists [x] (kolm_not (kA x))) (kolm_not (kolm_forall kA))) (NJ A)). %query 1 * D:({A:i -> o} {kA:{x:i} kolm (A x) (n (A x))} ({x} equiv (kA x) ([u:nk (A x)] (nk_dnotx u)) ([u:nk (not not (A x))] (nk_dnotr u))) -> complete (kolm_imp (kolm_exists [x] (kolm_not (kA x))) (kolm_not (kolm_forall kA))) % NJ proof returned by Twelf (nj_dnotx (nj_impi ([X2:nj (n (not n (forall ([T1:i] n (A T1)))))] nj_triple_neg_red (nj_triple_neg_red (nj_triple_neg_red (nj_dnotx (nj_noti ([q:o] [v:nj (n (not not not exists ([T2:i] n (not n (A T2)))))] nj_dneg_falser (nj_note (nj_triple_neg_red X2) (n false) (nj_dnotx (nj_foralli ([T3:i] nj_triple_neg_red (nj_triple_neg_red (nj_triple_neg_red (nj_dnotx (nj_noti ([q1:o] [v1:nj (n (not not not A T3))] nj_dneg_falser (nj_note (nj_triple_neg_red v) (n false) (nj_dnotx (nj_existsi T3 v1))) q1))))))))) q)))))))) (NK A)).