(* Abstract Machine *) (* Author: Iliano Cervesato *) (* Modified: Jeff Polakow, Frank Pfenning, Larry Greenfield, Roberto Virga *) functor AbsMachine ((*! structure IntSyn' : INTSYN !*) (*! structure CompSyn' : COMPSYN !*) (*! sharing CompSyn'.IntSyn = IntSyn' !*) structure Unify : UNIFY (*! sharing Unify.IntSyn = IntSyn' !*) structure Assign : ASSIGN (*! sharing Assign.IntSyn = IntSyn' !*) structure Index : INDEX (*! sharing Index.IntSyn = IntSyn' !*) (* CPrint currently unused *) structure CPrint : CPRINT (*! sharing CPrint.IntSyn = IntSyn' !*) (*! sharing CPrint.CompSyn = CompSyn' !*) structure Print : PRINT (*! sharing Print.IntSyn = IntSyn' !*) structure Names : NAMES (*! sharing Names.IntSyn = IntSyn' !*) (*! structure CSManager : CS_MANAGER !*) (*! sharing CSManager.IntSyn = IntSyn' !*) ) : ABSMACHINE = struct (*! structure IntSyn = IntSyn' !*) (*! structure CompSyn = CompSyn' !*) local structure I = IntSyn structure C = CompSyn (* We write G |- M : g if M is a canonical proof term for goal g which could be found following the operational semantics. In general, the success continuation sc may be applied to such M's in the order they are found. Backtracking is modeled by the return of the success continuation. Similarly, we write G |- S : r if S is a canonical proof spine for residual goal r which could be found following the operational semantics. A success continuation sc may be applies to such S's in the order they are found and return to indicate backtracking. *) fun raiseType (I.Null, U) = U | raiseType (I.Decl(G, D), U) = I.Lam(D, raiseType (G, U)) fun cidFromHead (I.Const a) = a | cidFromHead (I.Def a) = a fun eqHead (I.Const a, I.Const a') = a = a' | eqHead (I.Def a, I.Def a') = a = a' | eqHead _ = false (* Wed Mar 13 10:27:00 2002 -bp *) (* should probably go to intsyn.fun *) fun compose (G, IntSyn.Null) = G | compose (G, IntSyn.Decl(G', D)) = IntSyn.Decl(compose(G, G'), D) fun shiftSub (IntSyn.Null, s) = s | shiftSub (IntSyn.Decl(G, D), s) = I.dot1 (shiftSub (G, s)) (* solve' ((g, s), dp, sc) = () Invariants: dp = (G, dPool) where G ~ dPool (context G matches dPool) G |- s : G' G' |- g goal if G |- M : g[s] then sc M is evaluated Effects: instantiation of EVars in g, s, and dp any effect sc M might have *) fun solve ((C.Atom(p), s), dp as C.DProg (G, dPool), sc) = matchAtom ((p,s), dp, sc) | solve ((C.Impl(r, A, Ha, g), s), C.DProg (G, dPool), sc) = let val D' = I.Dec(NONE, I.EClo(A,s)) in solve ((g, I.dot1 s), C.DProg (I.Decl(G, D'), I.Decl (dPool, C.Dec(r, s, Ha))), (fn M => sc (I.Lam (D', M)))) end | solve ((C.All(D, g), s), C.DProg (G, dPool), sc) = let val D' = Names.decLUName (G, I.decSub (D, s)) (* val D' = I.decSub (D, s) *) in solve ((g, I.dot1 s), C.DProg (I.Decl(G, D'), I.Decl(dPool, C.Parameter)), (fn M => sc (I.Lam (D', M)))) end (* rSolve ((p,s'), (r,s), dp, sc) = () Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' G' |- r resgoal G |- s' : G'' G'' |- p : H @ S' (mod whnf) if G |- S : r[s] then sc S is evaluated Effects: instantiation of EVars in p[s'], r[s], and dp any effect sc S might have *) and rSolve (ps', (C.Eq(Q), s), C.DProg (G, dPool), sc) = (* argument order in call to unifiable??? *) (if Unify.unifiable (G, (Q, s), ps') (* effect: instantiate EVars *) then sc I.Nil (* call success continuation *) else ()) (* fail *) | rSolve (ps', (C.Assign(Q, eqns), s), dp as C.DProg(G, dPool), sc) = (case Assign.assignable (G, ps', (Q, s)) of SOME(cnstr) => aSolve((eqns, s), dp, cnstr, (fn () => sc I.Nil)) | NONE => ()) | rSolve (ps', (C.And(r, A, g), s), dp as C.DProg (G, dPool), sc) = let (* is this EVar redundant? -fp *) (* same effect as s^-1 *) val X = I.newEVar (G, I.EClo(A, s)) in rSolve (ps', (r, I.Dot(I.Exp(X), s)), dp, (fn S => solve ((g, s), dp, (fn M => sc (I.App (M, S)))))) end | rSolve (ps', (C.Exists(I.Dec(_,A), r), s), dp as C.DProg (G, dPool), sc) = let val X = I.newEVar (G, I.EClo (A,s)) in rSolve (ps', (r, I.Dot(I.Exp(X), s)), dp, (fn S => sc (I.App(X,S)))) end | rSolve (ps', (C.Axists(I.ADec(_, d), r), s), dp as C.DProg (G, dPool), sc) = let val X' = I.newAVar () in rSolve (ps', (r, I.Dot(I.Exp(I.EClo(X', I.Shift(~d))), s)), dp, sc) (* we don't increase the proof term here! *) end (* aSolve ((ag, s), dp, sc) = () Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' if G |- ag[s] auxgoal then sc () is evaluated Effects: instantiation of EVars in ag[s], dp and sc () *) and aSolve ((C.Trivial, s), dp, cnstr, sc) = (if Assign.solveCnstr cnstr then sc () else ()) | aSolve ((C.UnifyEq(G',e1, N, eqns), s), dp as C.DProg(G, dPool), cnstr, sc) = let val G'' = compose (G, G') val s' = shiftSub (G', s) in if Assign.unifiable (G'', (N, s'), (e1, s')) then aSolve ((eqns, s), dp, cnstr, sc) else () end (* matchatom ((p, s), dp, sc) => () Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' G' |- p : type, p = H @ S mod whnf if G |- M :: p[s] then sc M is evaluated Effects: instantiation of EVars in p[s] and dp any effect sc M might have This first tries the local assumptions in dp then the static signature. *) and matchAtom (ps' as (I.Root(Ha,S),s), dp as C.DProg (G,dPool), sc) = let val deterministic = C.detTableCheck (cidFromHead Ha) exception SucceedOnce of I.Spine (* matchSig [c1,...,cn] = () try each constant ci in turn for solving atomic goal ps', starting with c1. #succeeds >= 1 (succeeds at least once) *) fun matchSig nil = () (* return unit on failure *) | matchSig (Hc::sgn') = let val C.SClause(r) = C.sProgLookup (cidFromHead Hc) in (* trail to undo EVar instantiations *) CSManager.trail (fn () => rSolve (ps', (r, I.id), dp, (fn S => sc (I.Root(Hc, S))))); matchSig sgn' end (* matchSigDet [c1,...,cn] = () try each constant ci in turn for solving atomic goal ps', starting with c1. succeeds exactly once (#succeeds = 1) *) fun matchSigDet nil = () (* return unit on failure *) | matchSigDet (Hc::sgn') = let val C.SClause(r) = C.sProgLookup (cidFromHead Hc) in (* trail to undo EVar instantiations *) (CSManager.trail (fn () => (rSolve (ps', (r, I.id), dp, (fn S => raise SucceedOnce S)))); matchSigDet sgn') handle SucceedOnce S => sc (I.Root(Hc, S)) end (* matchDProg (dPool, k) = () where k is the index of dPool in global dPool from call to matchAtom. Try each local assumption for solving atomic goal ps', starting with the most recent one. *) fun matchDProg (I.Null, _) = (* dynamic program exhausted, try signature *) if deterministic then matchSigDet (Index.lookup (cidFromHead Ha)) else matchSig (Index.lookup (cidFromHead Ha)) | matchDProg (I.Decl (dPool', C.Dec(r, s, Ha')), k) = if eqHead (Ha, Ha') then if deterministic then (* #succeeds = 1 *) ((CSManager.trail (* trail to undo EVar instantiations *) (fn () => rSolve (ps', (r, I.comp(s, I.Shift(k))), dp, (fn S => (raise SucceedOnce S)))); matchDProg (dPool', k+1)) handle SucceedOnce S => sc (I.Root(I.BVar(k), S))) else (* #succeeds >= 1 -- allows backtracking *) (CSManager.trail (* trail to undo EVar instantiations *) (fn () => rSolve (ps', (r, I.comp(s, I.Shift(k))), dp, (fn S => sc (I.Root(I.BVar(k), S))))); matchDProg (dPool', k+1)) else matchDProg (dPool', k+1) | matchDProg (I.Decl (dPool', C.Parameter), k) = matchDProg (dPool', k+1) fun matchConstraint (cnstrSolve, try) = let val succeeded = CSManager.trail (fn () => case (cnstrSolve (G, I.SClo (S, s), try)) of SOME(U) => (sc U; true) | NONE => false) in if succeeded then matchConstraint (cnstrSolve, try+1) else () end in case I.constStatus(cidFromHead Ha) of (I.Constraint (cs, cnstrSolve)) => matchConstraint (cnstrSolve, 0) | _ => matchDProg (dPool, 1) end in val solve = solve end (* local ... *) end; (* functor AbsMachine *)