%%% Termination of the theorems in the %%% Church-Rosser proof. % par-lemmas %terminates M (identity M _). %terminates R* (append R* S* S*'). % par-cr %terminates R (subst R S S'). %terminates [R' R''] (dia R' R'' S' S''). %terminates R*'' (strip R' R*'' S*' S''). %terminates R*' (conf R*' R*'' S*' S*''). %terminates C (cr C S* S*'). % ord-lemmas %terminates R (appd R S* S*'). %terminates R* (lm1* R* S*). %terminates R* (apl1* R* S*). %terminates R* (apr1* R* S*). % equiv %terminates R (eq1 R S*). %terminates R (eq2 R S). %terminates R* (eq3 R* S*). %terminates R* (eq4 R* S*). %terminates C (eq5 C C'). % %terminates C' (eq5 C C'). % should fail %terminates C (sym_pconv C C'). % %terminates C' (sym_pconv C C'). % should fails with modes %terminates C (eq6 C C'). % ord-cr %terminates {} (cr_ord C S* S*').