%%% Connective one : o. %%% Inference Rules oner : conc one. onel : (hyp one -o conc C) o- conc C. %%% Identity Case id/one : id one ([hone:^(hyp one)] onel ^ oner ^ hone). %%% Principal Cases ca/one : ca one oner ([a:w][h : hyp one @ a] onel ^ D ^ h) D. %%% D-Commutative Cases cad/onel : ca A (onel ^ D ^ H) E (onel ^ F ^ H) <- ca A D E F. %%% E-Commutative Cases cae/onel: ca A D ([a] [x:hyp A @ a] onel ^ (E a x) ^ H) (onel ^ F ^ H) <- ca A D E F.