%%% Connective zero : o. %%% Inference Rules zerol : {a:w} {b:w} hyp zero @ a -> conc C @ a * b. %%% Identity Case id/zero : id zero ([hzero:^(hyp zero)] zerol ^ ^ hzero). %%% Principal Cases %%% D-Commutative Cases cad/zerol : ca A (zerol ^ ^ H) E (zerol ^ ^ H). %%% E-Commutative Cases cae/zerol : ca A D ([h:^ (hyp A)] zerol ^ ^ H) (zerol ^ ^ H).