(* Abstract Machine using substitution trees *) (* Author: Iliano Cervesato *) (* Modified: Jeff Polakow, Frank Pfenning, Larry Greenfield, Roberto Virga *) functor AbsMachineSbt ((*! structure IntSyn' : INTSYN !*) (*! structure CompSyn' : COMPSYN !*) (*! sharing CompSyn'.IntSyn = IntSyn' !*) structure Unify : UNIFY (*! sharing Unify.IntSyn = IntSyn' !*) structure SubTree : SUBTREE (*! sharing SubTree.IntSyn = IntSyn' !*) (*! sharing SubTree.CompSyn = CompSyn' !*) structure Assign : ASSIGN (*! sharing Assign.IntSyn = IntSyn' !*) structure Index : INDEX (*! sharing Index.IntSyn = IntSyn' !*) (* CPrint currently unused *) structure CPrint : CPRINT (*! sharing CPrint.IntSyn = IntSyn' !*) (*! sharing CPrint.CompSyn = CompSyn' !*) structure Print : PRINT (*! sharing Print.IntSyn = IntSyn' !*) structure Names : NAMES (*! sharing Names.IntSyn = IntSyn' !*) (*! structure CSManager : CS_MANAGER !*) (*! sharing CSManager.IntSyn = IntSyn'!*)) : ABSMACHINESBT = struct (*! structure IntSyn = IntSyn' !*) (*! structure CompSyn = CompSyn' !*) local structure I = IntSyn structure C = CompSyn val mSig : ((IntSyn.Exp * IntSyn.Sub) * CompSyn.DProg * (CompSyn.Flatterm list -> unit) -> unit) ref = ref (fn (ps, dp, sc) => ()) (* We write G |- M : g if M is a canonical proof term for goal g which could be found following the operational semantics. In general, the success continuation sc may be applied to such M's in the order they are found. Backtracking is modeled by the return of the success continuation. Similarly, we write G |- S : r if S is a canonical proof spine for residual goal r which could be found following the operational semantics. A success continuation sc may be applies to such S's in the order they are found and return to indicate backtracking. *) fun cidFromHead (I.Const a) = a | cidFromHead (I.Def a) = a fun eqHead (I.Const a, I.Const a') = a = a' | eqHead (I.Def a, I.Def a') = a = a' | eqHead _ = false (* Wed Mar 13 10:27:00 2002 -bp *) (* should probably go to intsyn.fun *) fun compose'(IntSyn.Null, G) = G | compose'(IntSyn.Decl(G, D), G') = IntSyn.Decl(compose'(G, G'), D) fun shift (IntSyn.Null, s) = s | shift (IntSyn.Decl(G, D), s) = I.dot1 (shift(G, s)) fun invShiftN (n, s) = if n = 0 then I.comp(I.invShift, s) else I.comp(I.invShift, invShiftN(n-1, s)) fun raiseType (I.Null, V) = V | raiseType (I.Decl (G, D), V) = raiseType (G, I.Pi ((D, I.Maybe), V)) fun printSub (IntSyn.Shift n) = print ("Shift " ^ Int.toString n ^ "\n") | printSub (IntSyn.Dot(IntSyn.Idx n, s)) = (print ("Idx " ^ Int.toString n ^ " . "); printSub s) | printSub (IntSyn.Dot (IntSyn.Exp(IntSyn.EVar (_, _, _, _)), s)) = (print ("Exp (EVar _ ). "); printSub s) | printSub (IntSyn.Dot (IntSyn.Exp(IntSyn.AVar (_)), s)) = (print ("Exp (AVar _ ). "); printSub s) | printSub (IntSyn.Dot (IntSyn.Exp(IntSyn.EClo (IntSyn.AVar (_), _)), s)) = (print ("Exp (AVar _ ). "); printSub s) | printSub (IntSyn.Dot (IntSyn.Exp(IntSyn.EClo (_, _)), s)) = (print ("Exp (EClo _ ). "); printSub s) | printSub (IntSyn.Dot (IntSyn.Exp(_), s)) = (print ("Exp (_ ). "); printSub s) | printSub (IntSyn.Dot (IntSyn.Undef, s)) = (print ("Undef . "); printSub s) (* ctxToEVarSub D = s*) fun ctxToEVarSub (Gglobal, I.Null, s) = s | ctxToEVarSub (Gglobal, I.Decl(G,I.Dec(_,A)), s) = let val s' = ctxToEVarSub (Gglobal, G, s) val X = I.newEVar (Gglobal, I.EClo(A,s')) in I.Dot(I.Exp(X),s') end | ctxToEVarSub (Gglobal, I.Decl(G,I.ADec(_,d)), s) = let val X = I.newAVar () in I.Dot(I.Exp(I.EClo(X, I.Shift(~d))), ctxToEVarSub (Gglobal, G, s)) end (* solve' ((g, s), dp, sc) = res Invariants: dp = (G, dPool) where G ~ dPool (context G matches dPool) G |- s : G' G' |- g goal if G |- M : g[s] then sc M is evaluated with return value res else Fail Effects: instantiation of EVars in g, s, and dp any effect sc M might have *) fun solve' ((C.Atom(p), s), dp as C.DProg (G, dpool), sc) = matchAtom ((p,s), dp, sc) | solve' ((C.Impl(r, A, Ha, g), s), C.DProg (G, dPool), sc) = let val D' = I.Dec(NONE, I.EClo(A,s)) in solve' ((g, I.dot1 s), C.DProg (I.Decl(G, D'), I.Decl (dPool, C.Dec(r, s, Ha))), sc) end | solve' ((C.All(D, g), s), C.DProg (G, dPool), sc) = let val D' = Names.decLUName (G, I.decSub (D, s)) in solve' ((g, I.dot1 s), C.DProg (I.Decl(G, D'), I.Decl(dPool, C.Parameter)), sc) end (* rSolve ((p,s'), (r,s), dp, sc) = res Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' G' |- r resgoal G |- s' : G'' G'' |- p : H @ S' (mod whnf) if G |- S : r[s] then sc S is evaluated with return value res else Fail Effects: instantiation of EVars in p[s'], r[s], and dp any effect sc S might have *) and rSolve (ps', (C.Eq(Q), s), C.DProg (G, dPool), sc) = (if Unify.unifiable (G, ps', (Q, s)) (* effect: instantiate EVars *) then sc nil (* call success continuation *) else ()) (* fail *) | rSolve (ps', (C.Assign(Q, eqns), s), dp as C.DProg(G, dPool), sc) = (case Assign.assignable (G, ps', (Q, s)) of SOME(cnstr) => aSolve ((eqns, s), dp, cnstr, (fn () => sc nil)) | NONE => ()) | rSolve (ps', (C.And(r, A, g), s), dp as C.DProg (G, dPool), sc) = let (* is this EVar redundant? -fp *) val X = I.newEVar (G, I.EClo(A, s)) in rSolve (ps', (r, I.Dot(I.Exp(X), s)), dp, (fn skel1 => solve' ((g, s), dp, (fn skel2 => sc (skel1 @ skel2))))) end | rSolve (ps', (C.Exists(I.Dec(_,A), r), s), dp as C.DProg (G, dPool), sc) = let val X = I.newEVar (G, I.EClo (A,s)) in rSolve (ps', (r, I.Dot(I.Exp(X), s)), dp, sc) end | rSolve (ps', (C.Axists(I.ADec(_, d), r), s), dp as C.DProg (G, dPool), sc) = let val X' = I.newAVar () in rSolve (ps', (r, I.Dot(I.Exp(I.EClo(X', I.Shift(~d))), s)), dp, sc) (* we don't increase the proof term here! *) end (* aSolve ((ag, s), dp, sc) = res Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' if G |- ag[s] auxgoal then sc () is evaluated with return value res else Fail Effects: instantiation of EVars in ag[s], dp and sc () *) and aSolve ((C.Trivial, s), dp, cnstr, sc) = (if Assign.solveCnstr cnstr then sc () else () (* Fail *)) | aSolve ((C.UnifyEq(G',e1, N, eqns), s), dp as C.DProg(G, dPool), cnstr, sc) = let val G'' = compose' (G', G) val s' = shift (G', s) in if Assign.unifiable (G'', (N, s'), (e1, s')) then aSolve ((eqns, s), dp, cnstr, sc) else () (* Fail *) end (* solve subgoals of static program clauses *) (* sSolve ((sg, s) , dp , sc = if dp = (G, dPool) where G ~ dPool G |- s : G' sg = g1 and g2 ...and gk for every subgoal gi, G' |- gi G | gi[s] then sc () is evaluated else Fail Effects: instantiation of EVars in gi[s], dp, sc *) and sSolve ((C.True, s), dp, sc) = sc nil | sSolve ((C.Conjunct (g, A, Sgoals), s), dp as C.DProg(G, dPool), sc) = solve' ((g,s), dp, (fn skel1 => sSolve ((Sgoals, s), dp, (fn skel2 => sc (skel1 @ skel2))))) (* match signature *) and matchSig (ps' as (I.Root(Ha,S),s), dp as C.DProg (G, dPool), sc) = let fun mSig nil = () (* return on failure *) | mSig ((Hc as I.Const c)::sgn') = let val C.SClause(r) = C.sProgLookup (cidFromHead Hc) in (* trail to undo EVar instantiations *) CSManager.trail (fn () => rSolve (ps', (r, I.id), dp, (fn S => sc ((C.Pc c) :: S)))); mSig (sgn') end in mSig(Index.lookup (cidFromHead Ha)) end and matchIndexSig (ps' as (I.Root(Ha,S),s), dp as C.DProg (G, dPool), sc) = SubTree.matchSig (cidFromHead Ha, G, ps', (fn ((ConjGoals, s), clauseName) => sSolve ((ConjGoals, s), dp, (fn S => sc ((C.Pc clauseName) :: S))))) (* matchatom ((p, s), dp, sc) => res Invariants: dp = (G, dPool) where G ~ dPool G |- s : G' G' |- p : type, p = H @ S mod whnf if G |- M :: p[s] then sc M is evaluated with return value res else Fail Effects: instantiation of EVars in p[s] and dp any effect sc M might have This first tries the local assumptions in dp then the static signature. *) and matchAtom (ps' as (I.Root(Ha,S),s), dp as C.DProg (G, dPool), sc) = let (* matchDProg (dPool, k) = () where k is the index of dPool in global dPool from call to matchAtom. Try each local assumption for solving atomic goal ps', starting with the most recent one. *) fun matchDProg (I.Null, _) = (* dynamic program exhausted, try signature there is a choice depending on how we compiled signature *) (!mSig) (ps', dp, sc) | matchDProg (I.Decl (dPool', C.Dec(r, s, Ha')), k) = if eqHead (Ha, Ha') then (CSManager.trail (* trail to undo EVar instantiations *) (fn () => rSolve (ps', (r, I.comp(s, I.Shift(k))), dp, (fn S => sc ((C.Dc k) :: S)))); matchDProg (dPool', k+1)) else matchDProg (dPool', k+1) | matchDProg (I.Decl (dPool', C.Parameter), k) = matchDProg (dPool', k+1) fun matchConstraint (solve, try) = let val succeeded = CSManager.trail (fn () => case (solve (G, I.SClo (S, s), try)) of SOME(U) => (sc [C.Csolver U]; true) | NONE => false) in if succeeded then matchConstraint (solve, try+1) else () end in case I.constStatus(cidFromHead Ha) of (I.Constraint (cs, solve)) => matchConstraint (solve, 0) | _ => matchDProg (dPool, 1) end in fun solve args = (case (!CompSyn.optimize) of CompSyn.No => (mSig := matchSig ; solve' args) | CompSyn.LinearHeads => (mSig := matchSig; solve' args) | CompSyn.Indexing => (mSig := matchIndexSig; solve' args)) end (* local ... *) end; (* functor AbsMachineSbt *)