%{ This is a case study translating the untyped lambda calculus into S, K, and I combinators. The correctness of the translation is proven in the following sense: if a term steps to a reduct, its translation multi-steps to its reduct's translation. [[User:William Lovas|William Lovas]] }% %{ ---- }% %{ First we define the syntax of the two languages. term is the type of untyped lambda-calculus terms; cterm is the type of untyped combinator terms. }% term : type. %name term M x. app : term -> term -> term. lam : (term -> term) -> term. cterm : type. %name cterm N y. s : cterm. k : cterm. i : cterm. capp : cterm -> cterm -> cterm. %{ We can use Twelf's abbreviation mechanism to obtain some cute syntax. }% %abbrev @ = app. %infix left 10 @. %abbrev @@ = capp. %infix left 10 @@. %{ ---- }% %{ Then we define reduction relations on both languages. step is the single-step reduction relation on lambda terms; cstep is the single-step reduction relation on combinator terms. }% step : term -> term -> type. s-β : step (app (lam [x] M1 x) M2) (M1 M2). s-1 : step (app M1 M2) (app M1' M2) <- step M1 M1'. s-2 : step (app M1 M2) (app M1 M2') <- step M2 M2'. cstep : cterm -> cterm -> type. cs-i : cstep (capp i X) X. cs-k : cstep (capp (capp k X) Y) X. cs-s : cstep (capp (capp (capp s X) Y) Z) (capp (capp X Z) (capp Y Z)). cs-1 : cstep (capp X Y) (capp X' Y) <- cstep X X'. cs-2 : cstep (capp X Y) (capp X Y') <- cstep Y Y'. %{ We also define multi-step reduction on combinator terms. Our simulation will relate single-step derivations in the lambda-calculus to multi-step derivations on the translated terms. }% cstep* : cterm -> cterm -> type. cs-cons : cstep* N N'' <- cstep N N' <- cstep* N' N''. cs-nil : cstep* N N. %{ We can pre-emptively prove some compatibility lemmas about multi-step reduction. }% cs-1* : cstep* N1 N1' -> cstep* (capp N1 N2) (capp N1' N2) -> type. %mode +{N1:cterm} +{N1':cterm} +{N2:cterm} +{CS1:cstep* N1 N1'} -{CS2:cstep* (capp N1 N2) (capp N1' N2)} (cs-1* CS1 CS2). - : cs-1* cs-nil cs-nil. - : cs-1* (cs-cons CS C) (cs-cons CS' (cs-1 C)) <- cs-1* CS CS'. %worlds () (cs-1* _ _). %total {CS} (cs-1* CS _). cs-2* : cstep* N2 N2' -> cstep* (capp N1 N2) (capp N1 N2') -> type. %mode +{N1:cterm} +{N2:cterm} +{N2':cterm} +{CS1:cstep* N2 N2'} -{CS2:cstep* (capp N1 N2) (capp N1 N2')} (cs-2* CS1 CS2). - : cs-2* cs-nil cs-nil. - : cs-2* (cs-cons CS C) (cs-cons CS' (cs-2 C)) <- cs-2* CS CS'. %worlds () (cs-2* _ _). %total {CS} (cs-2* CS _). cs-trans : cstep* N1 N2 -> cstep* N2 N3 -> cstep* N1 N3 -> type. %mode cs-trans +Cs1 +Cs2 -Cs3. - : cs-trans cs-nil Cs2 Cs2. - : cs-trans (cs-cons Cs1 C) Cs2 (cs-cons Cs12 C) <- cs-trans Cs1 Cs2 Cs12. %worlds () (cs-trans _ _ _). %total {Cs} (cs-trans Cs _ _). %{ ---- }% %{ We can now define our translation in the standard way. Bracket abstraction is represented by a judgement relating LF-level abstractions in the combinator language to closed combinator terms. This is essentially [[higher-order abstract syntax]]. }% trans : term -> cterm -> type. bracket : (cterm -> cterm) -> cterm -> type. t-app : trans (app M1 M2) (capp N1 N2) <- trans M1 N1 <- trans M2 N2. t-lam : trans (lam [x] M x) N' <- ({x:term} {y:cterm} trans x y -> trans (M x) (N y)) <- bracket ([y] N y) N'. b-i : bracket ([x] x) i. b-k : bracket ([x] Y) (capp k Y). b-s : bracket ([x] capp (N1 x) (N2 x)) (capp (capp s N1') N2') <- bracket ([x] N1 x) N1' <- bracket ([x] N2 x) N2'. %{ ---- }% %{ First, we prove the correctness of bracket abstraction itself: the application of a bracket abstraction reduces to a substitution. }% subst : bracket ([x] N x) N' -> {N0} cstep* (capp N' N0) (N N0) -> type. %mode subst +B +N0 -CS. - : subst b-i N0 (cs-cons cs-nil cs-i). - : subst b-k N0 (cs-cons cs-nil cs-k). % developing incrementally, it's useful to write down the type of each output - : subst (b-s (B2 : bracket ([x] N2 x) N2') (B1 : bracket ([x] N1 x) N1')) N0 (cs-cons CS12' cs-s) <- subst B1 N0 (CS1 : cstep* (N1' @@ N0) (N1 N0)) <- subst B2 N0 (CS2 : cstep* (N2' @@ N0) (N2 N0)) <- cs-1* CS1 (CS1' : cstep* ((N1' @@ N0) @@ (N2' @@ N0)) (N1 N0 @@ (N2' @@ N0))) <- cs-2* CS2 (CS2' : cstep* (N1 N0 @@ (N2' @@ N0)) (N1 N0 @@ N2 N0)) <- cs-trans CS1' CS2' CS12'. % turns out that once the case is done, the types are unnecessary! %%- : subst (b-s B2 B1) N0 (cs-cons CS12' cs-s) %% <- subst B1 N0 CS1 %% <- subst B2 N0 CS2 %% <- cs-1* CS1 CS1' %% <- cs-2* CS2 CS2' %% <- cs-trans CS1' CS2' CS12'. %worlds () (subst _ _ _). %total {B} (subst B _ _). %{ Then, we can prove simulation, the correctness of translation, by a straightforward induction on single-step derivations in the lambda-calculus, using the correctness of bracket abstraction as a lemma in the case of a beta-reduction. }% simulate : step M M' -> trans M N -> trans M' N' -> cstep* N N' -> type. %mode simulate +S +T -T' -CS. %{ NB: in this step, on paper, you have to prove two compositionality lemmas. In Twelf, using higher-order abstract syntax, we get them for free -- see (T1 _ _ T2) output. }% - : simulate s-β (t-app T2 (t-lam B1 T1)) (T1 _ _ T2) CS <- subst B1 N2 CS. - : simulate (s-1 S1) (t-app T2 T1) (t-app T2 T1') CSapp <- simulate S1 T1 T1' CS1 <- cs-1* CS1 CSapp. - : simulate (s-2 S2) (t-app T2 T1) (t-app T2' T1) CSapp <- simulate S2 T2 T2' CS2 <- cs-2* CS2 CSapp. %worlds () (simulate _ _ _ _). %total D (simulate D _ _ _).