%%%% theorems about sub-derivations subder/md/pj1 : ofsg L T Y (md/pj1 M) _ -> ofsg L T Y' M (sg/sgm _ _) -> pty-sub Y' Y -> type. %mode subder/md/pj1 +D1 -D2 -D3. - : subder/md/pj1 (ofsg/md/pj1 D) D PS <- pty-sub-refl P PS. - : subder/md/pj1 (ofsg/sgm-ext D1 D2) D4 pty-sub/pp <- subder/md/pj1 D1 D3 pty-sub/pp <- subder/md/pj1 D3 D4 pty-sub/pp. - : subder/md/pj1 (ofsg/kd-ext D1 _ _) D1' pty-sub/pp <- subder/md/pj1 D1 D1' pty-sub/pp. - : subder/md/pj1 (ofsg/sub (D1: ofsg _ _ Y2 _ _) _ (PS': pty-sub Y2 Y3)) D2 (PS'': pty-sub Y1 Y3) <- subder/md/pj1 D1 (D2: ofsg _ _ Y1 _ _) (PS: pty-sub Y1 Y2) <- pty-sub-trans PS PS' PS''. %worlds (ofsg+vdt-block | oftp+vdt-block | ofkd+vdt-block) (subder/md/pj1 _ _ _). %reduces D2 < D1 (subder/md/pj1 D1 D2 _). %total (D1) (subder/md/pj1 D1 _ _). subder/md/pj2 : ofsg L T Y (md/pj2 M) _ -> ofsg L T Y' M (sg/sgm _ _) -> pty-sub Y' Y -> type. %mode subder/md/pj2 +D1 -D2 -D3. - : subder/md/pj2 (ofsg/md/pj2 D _) D pty-sub/pp. - : subder/md/pj2 (ofsg/sgm-ext D1 D2) D4 pty-sub/pp <- subder/md/pj2 D2 D3 pty-sub/pp <- subder/md/pj2 D3 D4 pty-sub/pp. - : subder/md/pj2 (ofsg/kd-ext D1 _ _) D1' pty-sub/pp <- subder/md/pj2 D1 D1' pty-sub/pp. - : subder/md/pj2 (ofsg/sub D1 _ PS') D2 (PS'': pty-sub Y1 Y3) <- subder/md/pj2 D1 D2 (PS: pty-sub Y1 Y2) <- pty-sub-trans PS PS' PS''. %worlds (ofsg+vdt-block | oftp+vdt-block | ofkd+vdt-block) (subder/md/pj2 _ _ _). %reduces D2 < D1 (subder/md/pj2 D1 D2 _). %total (D1) (subder/md/pj2 D1 _ _).