% Canonical forms %theorem ss_cn : forall* {A:o} {S: solve A} {D: pf A} forall {SS : s_sound S D} exists {CN : can A D} true. %theorem hs_at : forall* {A:o} {H : assume A}{D : pf A} forall {HS : h_sound H D} exists {ATH : atm D} true. %theorem is_at : forall* {A : o} {P : p}{I : A >> P} {D : (pf A -> pf (atom P))} forall {IS : i_sound I D} exists {ATI : ({u:pf A} atm u -> atm (D u))} true. %prove 4 (SS HS IS) (ss_cn SS _) (hs_at HS _) (is_at IS _). %terminates (SS HS IS) (ss_cn SS _) (hs_at HS _) (is_at IS _).